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| ON SOCIAL SINGLE SPECIES POPULATIONS ﬂ

In all formal mathematical theories of popula-
tion growth, population increase is considered to
be limited by some function of the number of
animals present. The classical Verhulst-Pearl

equation of population growth can be written as:
dN (K —aQN)

where N is the number of t:-rgamsms in the popu-
lation, r the intrinsic rate of increase and K the
size (m one sense) of the available universe. ais
a proportionality constant.

Measuring the environment in terms of the
number of organisms in the population implicitly
assumes that there is something (x) in the en-

vironment such that T;.—nf x is required by each

animal at equilibrium. If the total available
quantity of x increases in the environment the
equilibrium number of organisms in the popula-
tion increases proportionally.

In effect, the amount of x required by each
organism in the population is independent of the
other organisms in the population while the
amount of x available to each organism is de-
pendent on the total amount available in the en-
vironment and on the number of organisms com-
peting for it.

This relation is diagrammed in Figure 2a
where the I; represent individual animals of the
population, x the amount of material in the en-
vironment, and the pairs of arrows represent the
demands of the individuals on the total quantity

o ) iy
of x and the amount of x which e:ach
actually obtains. T
The Verhulst-Pearl population eq E'
been amphﬁed to include two species &
competitive interaction between Ehelﬁ15
1935). 7
Hutchinson (1947) has suggestﬂd '
species-competition situations can be a -
described only by assuming a social interact
between members of each species. This it
is formulated as: 8

le o (Kl - G1N1 - 'I'NS’)
@ (Ks = ﬂ:N: —_;?I‘)
dt Ka

where the subscripts 1 and 2 refer to spe
and two respectively. K, N, and r re
previous definition. AN :
yN# and 8N,? express the depressing el
each species on the population of the comp 'EH"
species. The effectiveness of each species 4 &8
interaction with the competing species is direc
proportional to the interaction betwyeﬂ
dividuals of the species. i
This is a simple type of social inte p
Hutchinson points out that this is a simple €
ample of a more general case in Wthh TH
dN,? are replaced by the power series: -
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iyl interesting conclusions can be derived if
' 3 similar notation is used to describe social inter-

actions in mule-l?mu population growth.

N _ (K = by

e dt K -
B8 {2 the initial non-social case (1), the relation
 petween size of the environment (measured as

punt of z) and number of animals at the
et asymptote could be written as:

e K—-aN=0 (5)
i the simple social case (4), it becomes:
. K -sv=0 (6)
whil nthtnnut general case it becomes:
j’ K —f(N) =0 (n
j{ﬂ]ma}'heapnwtrmiu.

ﬂm: the efficiency of an asymptatic popu-

Pt as — , that is, as the number of arganisms

Hl

;'_.* , can be maintained by a unit of environ-
e

.
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We define the instability of the population as

:;:. that is, as the rate of change of population

size with size of the environment.

Comparing the sitsations represented by (5)
and (6) we find that for all suficiently high values
of N, taking equal values of K, both efficiency
and inatability are higher in the non-social case,
regardless of the absolute values of @ and &,
which must however be positive.

If negative values of the coefficients in (5) and
(6] were permitted, the population would increase
with negative environmental size, which is
absurd.

The relation between number of individuals in
the population at its upper asymptote and the
of the environment (K) is shown in Figure 1 lor
pocial and mon-social stuations.

If the proportionality constants a and & are
considered equal then the efficiency and instabil-
ity of a social population are always lower than
those of a non-social population.

Taking (7) as a power series, (5) and (6) can
be considered as representing those spcial cases
in which the first and second coefficients re-
spectively are the only non-zero coefficients in
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the serjes. Consider two closely related popula-
tions, one of which has a genetic tendency to
follow (5) and the other (6). There is no a priori
reason to consider the coefficients a and b equal.
1f, however, a is equal to b, the social population
will show a lower efficiency and lower instability
than the non-social population for all values of N.
If & < a then there will be an apparent "optimal
density” effect when the two populations are
compared. For sufficiently low values of N the
social population will show a higher efficiency
than the non-social population, but since the
efficiency of the social population will decrease
monotonically with K and N this does not con-
stitute a true “optimal density™ effect.

It seems advisable to limit the term “optimal
density’ to those situations in which the effici-
ency of a gingle population over some range aof
values of & is higher than that at either a lower
or higher density value.

Optimal density can be discussed in this form-
ulation in terms of the first three members of a

g
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The biclogical significance of the first thre
members of the series seems fairly clear. “The
expression aV refers to competition between -
dividuals of the population for some material jg
the environment, disregarding all direct inters
actions between individuals. The term bN%ps
fers to direct interaction between the individual
of the population, dependent on popuk tio
density and independent of the environmend
except in so far as this interaction affects the
competition for environmental material betwes
organisms. This is indicated in Figure 7 by
uniting all the individuals of the population in g
box, to indicate their interaction and drawiag®
arrows to indicate the effect of this interaction’
on the competitive process. e i

The third-order term may represent the effect S5
of groups of individuals on single individuals St
for example, the effect of neighboring bands of =~
mankeys on an individual monkey of one band eFLEs
the effect of other family groups. - TR

This is schematized as Figure 2c where the i
bracket groups the population into the system S et
which in turn affects each individual I;. % L

The significance of higher members of the =
pOwer series scems vague at present. - My

Taking a population which lollows the form -

E—aN =Nt — N =0

a true optimal-density effect which does not ¥id
late previous considerations of possik '_ K- .

L=

result if, and only if, ——
a) b is negative
b) b<a i
and %
il
e) b>c L

o
"'d

with @ and ¢ positive. ! :
The relation between the cocflicients is U
restricted by the requirement that N and K m
be positive and greater than zero.
striction limits the relation bﬂirl;‘t ;;:; =
in a relatively stringent way. [t has M=
arithmetically that values of b which will produc® 5
an optimal-density effect without violating =2
conditions of K and N being pesitive will bear
the relation shown in Figure 3 to a, with €/
BE WLy, i =
Optimal-density effects are impossible _H
9. For values of b above the valuwes 38
striped area of Figure 3 there exists 2 M:h_..
value of & for which K is negative. For valuet
of b below this area efficiency decreases MOSH
tonically with N, so that no optimal-density
effect i observed. e
The maximal optimal-density effect i '“..'
inth:mngenlﬂ-!:tu-kmh"g__h
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= 1000¢. This is in surprisingly close agreement
th the values reported for three experimental
ation :|.:| which optimal density was meas-
oiium confusum Maclagen (1932) and
l[lil!l!]' found that maximal reproduc-
I‘tmnl-: oocurred when twe to four beetles
e ﬁnu:l in each experimental container,
i ':'5 {1943) found maximal longevity in Daphaia
i hﬂhilt a density of five [emales in each
: container of culture medium. "ﬁ:tuhm
| found maximal growth rates in mice
v* to four to a cage at 16 C. Other
ted instances of optimal density effects do
e 5o well substantiated as these three {see
W al. 1949). The significance of the agree-
th the predicted optimal density level
dear since 20 many simplifications have
Introd duced into the theory.
Mhould be made clear that the concept of
ﬂﬁlﬂ" has been used as an absolute
out  this discussion. Mo re-
htu made on the geometric size
ent except that it be sufficiently
_Flilllt continual interaction between
d I:ht population. The consider-

Fia, 3.

ation of population density as an abselute num-
ber is implicit in the common use of the term
K —alN,

X in {L).

The form of Figures | and 3 iz independent of
the implicit assumptions of the Verhulst-Pearl
equation. If the population consisted of a series
of non-equivalent classes of animals (as in the
formulations of Leslie 1948 and Slobodkin 1953),
instead of the single class implicit in N, the same
results would follow, if the number of animals in
each category remained constant.

The system is probably completely inapplicable
in any situation in which communication occurs
between animals, as in bees.  In such a situation
the value of K is in a sense determined by the
activity of the organisms.

Figure 1 iz probably of significance as an indi-
cation of the environmental conditions which
would permit social systems to evalve.

If the population exists in a highly variable
environment there may be a selective advantage
in developing higher-order interactions between
organisms to provide stability at the cost of
efficiency. Efficiency becomes of primary sig-
nificance in relatively stable environments.
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SuMMARY

Application of Hutchinson's {1947) notation
for social interaction in an inter-species competi-
tion situation to the growth of single species
populations permits the derivation of general
conditions for the occurrence of optimal density
effects in asymptotic populations,

If the relation between K (the “size’’ of the
environment) and ¥ (the number of animals at

population equilibrium) is expressed as
K = alN 4 bNT 4 N3,

where a, b, ¢ are constants, optimal density
effects will be found whenever the ratio a:b:c is
such as to lie in the shaded portion of Figure 3.

In general, social populations have a lower
efficiency and higher stability than non-social
populations,
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THE BALANOID BIOME-TYPE OF INTERTIDAL ROCKY SHDREﬁl_ B

The concept of the biome and the biome-type
has arisen entirely from studies of terrestrial
ecology. Several other terms are partial or
almost direct synonyms of these expressions;
however, all point toward common ecological
principles that, in my opinion, are best repre-
sented by the biome-type as recently defined
and discussed by Allee, Emerson, Park, Park
and Schmidt (1949).

Though biome-types are evident on land in
relationships between climate, physiography and
biotic development., attempts to demonstrate
comparable ecological principles in other en-
vironments have not been convincing nor have
they been widely accepted. Clements and Shel-
ford (1939) suggested that certain specific
maring communities be recognized as having
the ecological status of a biome. Their Ba-
lanus-Littorina Biome suggested this type of
ecological relationship in the intertidal zone,
With qualifications in the light of later studies,
particularly the work of Stephenson and Ste-
phenson (194%) who recognize a balanoid mid-

1 Contribution No. 16, Oceanographic Insti-
tute, Florida State University.

§ .": -'_..
littoral zone, the biome status of intertss
rocky shores can be further clarified.
generally regarded as marine, intertidal a
are neither terrestrial nor oceanic; thus t
gard a biotic development in these tevels 2
biome does not preclude other intespret
of submarine environments, such as pooj
by Allee ¢f al. (1949) to the effect that
oceans we are dealing with a
regarded as a single biome-type-

More specifically the Balanus- I'-IW
munity of the North Pacific was dn:lﬂ'lﬂl' o
Clements and Shelford for identification &8 ¥
biome. They noted that their acquaing "
with 1t is primarily in the Puget e
bulpumud-nutﬂut,lhnmhﬂ“m
band only a few fut]:ughlmumdlﬂlh‘ ;
tidal zome, *. . . it is apparently
tributed around the North Pacific.”
authors mentioned as dominant in “’“ :
munity three spu:!ts of harnacles, Bolanss €
osus, B. glondula, and Chthamalus “d
two species of muﬂr.ls. Mytilus edulis &
californionus. As the most d‘-lll“ll'-f“"
tile forms they mentioned three littorine Iﬂ'
pods, Littorina silchana, L. sewinlats



